4,171 research outputs found

    Informative sensing : theory and applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 145-156).Compressed sensing is a recent theory for the sampling and reconstruction of sparse signals. Sparse signals only occupy a tiny fraction of the entire signal space and thus have a small amount of information, relative to their dimension. The theory tells us that the information can be captured faithfully with few random measurement samples, even far below the Nyquist rate. Despite the successful story, we question how the theory would change if we had a more precise prior than the simple sparsity model. Hence, we consider the settings where the prior is encoded as a probability density. In a Bayesian perspective, we see the signal recovery as an inference, in which we estimate the unmeasured dimensions of the signal given the incomplete measurements. We claim that good sensors should somehow be designed to minimize the uncertainty of the inference. In this thesis, we primarily use Shannon's entropy to measure the uncertainty and in effect pursue the InfoMax principle, rather than the restricted isometry property, in optimizing the sensors. By approximate analysis on sparse signals, we found random projections, typical in the compressed sensing literature, to be InfoMax optimal if the sparse coefficients are independent and identically distributed (i.i.d.). If not, however, we could find a different set of projections which, in signal reconstruction, consistently outperformed random or other types of measurements. In particular, if the coefficients are groupwise i.i.d., groupwise random projections with nonuniform sampling rate per group prove asymptotically Info- Max optimal. Such a groupwise i.i.d. pattern roughly appears in natural images when the wavelet basis is partitioned into groups according to the scale. Consequently, we applied the groupwise random projections to the sensing of natural images. We also considered designing an optimal color filter array for single-chip cameras. In this case, the feasible set of projections is highly restricted because multiplexing across pixels is not allowed. Nevertheless, our principle still applies. By minimizing the uncertainty of the unmeasured colors given the measured ones, we could find new color filter arrays which showed better demosaicking performance in comparison with Bayer or other existing color filter arrays.by Hyun Sung Chang.Ph.D

    Near-Infrared Photometry of the Star Clusters in the Dwarf Irregular Galaxy IC 5152

    Get PDF
    We present JHK-band near-infrared photometry of star clusters in the dwarf irregular galaxy IC 5152. After excluding possible foreground stars, a number of candidate star clusters are identified in the near-infrared images of IC 5152, which include young populations. Especially, five young star clusters are identified in the (J-H, H-K) two color diagram and the total extinction values toward these clusters are estimated to be A_V =2 - 6 from the comparison with the theoretical values given by the Leitherer et al. (1999)'s theoretical star cluster model.Comment: Accepted by the Journal of the Korean Astronomical Society, 2006 December issue (Vol. 39, No. 4

    Two-gap and paramagnetic pair-breaking effects on upper critical field of SmFeAsO0.85_{0.85} and SmFeAsO0.8_{0.8}F0.2_{0.2} single crystals

    Full text link
    We investigated the temperature dependence of the upper critical field [Hc2(T)H_{c2}(T)] of fluorine-free SmFeAsO0.85_{0.85} and fluorine-doped SmFeAsO0.8_{0.8}F0.2_{0.2} single crystals by measuring the resistive transition in low static magnetic fields and in pulsed fields up to 60 T. Both crystals show that Hc2(T)H_{c2}(T)'s along the c axis [Hc2c(T)H_{c2}^c(T)] and in an abab-planar direction [Hc2ab(T)H_{c2}^{ab}(T)] exhibit a linear and a sublinear increase, respectively, with decreasing temperature below the superconducting transition. Hc2(T)H_{c2}(T)'s in both directions deviate from the conventional one-gap Werthamer-Helfand-Hohenberg theoretical prediction at low temperatures. A two-gap nature and the paramagnetic pair-breaking effect are shown to be responsible for the temperature-dependent behavior of Hc2cH_{c2}^c and Hc2abH_{c2}^{ab}, respectively.Comment: 21 pages, 8 figure

    A method of measuring the amplitude-modulated vacuum field near a conducting mirror

    Get PDF
    Electromagnetic fields of the vacuum mode near a conducting mirror are modified with respect to those in free space, with their amplitudes having a sinusoidal spatial dependence from the mirror. Therefore if we combine this spatially amplitude-modulated vacuum field mode and intense coherent light with a beam splitter, we may detect this fluctuation of the vacuum mode in a homodyne detection scheme. It will give a new method to produce squeezed states of light with a single mirror placed close to an unused port of a beam splitter. We show that the amplitude fluctuation of the combined light can be reduced by a factor of 2 below that of the coherent light. We also discuss the limitations due to the finite line width of the laser and the effective absorption length of the photodiodes

    Nurses steps, distance traveled, and perceived physical demands in a three-shift schedule

    Get PDF
    Abstract Background The physical job demands of hospital nurses are known to be very high. Although many studies have measured the physical activities of nurses subjectively using questionnaires, it remains necessary to quantify and measure nurses physical activity at work using objective indicators. This study was conducted to address this gap in the literature by analyzing nurses physical activity using both objective measurements and subjective perceptions. The number of steps, distance traveled, and actual work hours were measured during work, and the influence of related factors was analyzed. Methods Using a cross-sectional design, survey and activity tracking data were collected from nurses who worked in three shifts in two tertiary hospitals located in the capital region of South Korea. The participants comprised 117 nurses working in four different units (medical ward, surgical ward, intensive care unit, emergency room), and data from 351 shifts were used in the final analysis. Between-group differences in the main variables were analyzed using the t-test, the Mann–Whitney test, analysis of variance, or the Kruskal–Wallis test, as appropriate. The relationships were examined through multiple linear regression analysis. Results The average number of steps and distance traveled were greatest for nurses working in the emergency room, followed by the intensive care unit, surgical ward, and medical ward (in descending order). Younger nurses and those with shorter unit experience tended to have the greatest number of steps and distance traveled. Conclusion Using activity trackers, this study derived physical activity measures such as number of steps and distance traveled, enabling an objective examination of physical activity during shifts. Nurses level of physical activity differed depending on the type of nursing unit, nurses age, and unit experience. These results suggest the need for support programs that are specific to the job demands of specific nursing units

    H2 pressure swing adsorption for IGCC power plant and techno-economic analysis of integrating PSA to IGCC with carbon capture

    Get PDF
    Carbon capture and sequestration technologies emerge as the effectual remediation processes to reduce CO2 emissions from coal power plants. Integrated gasification combined cycle (IGCC) is a representative technology for utilizing coal as feedstock and is consequently playing a more important role to cover the global energy demand. The IGCC produces H2-rich mixture at high pressures (30-35 bar) after capturing CO2. It is reported that the high purity H2 recovered from the IGCC process can be economically supplied to a hydrogen turbine or fuel cell. And a PSA process is a strong candidate to produce high purity H2 from the IGCC effluent gas. However, due to higher operating pressure than the present H2 PSA processes, reducing the operating costs and efficiency has emerged as one of the key issues. Please click Additional Files below to see the full abstract

    Development of Automatic Mold Shot Measurement and Management System for Smart Factory

    Get PDF
    Many small- and medium-sized car-part manufacturers are either still managing their mold manually or rarely managing it, and therefore, experience significant manufacturing cost and loss in time. In such a situation, a module has been developed in the present work which can count the number of mold used. Such a module is extremely important for small and medium-sized enterprises (SMEs) applying which in the production line they will be able to manage the mold life cycle and improve product quality. This is expected to have both direct and indirect effects on their business activities. The developed system uses a photo sensor, distance measurement sensor, Atmega128 MCU, tablet pc and Bluetooth communication module. The actual module developed in this study was set up on a molding equipment for test and data were collected using an existing tablet PC. The test showed that the number of shots increased when the upper mold touched the lower mold. The maximum and minimum value between the upper and lower molds could be adjusted with the automatic mold shot measurement and management system. Therefore, any molding equipment with various upper-lower gaps will be able to apply the newly developed system
    corecore